对于各类不同的生产场合和检测要求,选择合适的气体检测仪是每一个从事安全和卫生工作的人员都必须十分注意的。这里我们将就一些具体情况做一介绍,供大家参考。
确认所要检测气体种类和浓度范围:
每一个生产部门所遇到的气体种类都是不同的。在选择气体检测仪时就要考虑到所有可能发生的情况。如果甲烷和其它毒性较小的烷烃类居多,选择LEL检测仪无疑是zui为合适的。这不仅是因为LEL检测仪原理简单,应用较广,同时它还具有维修、校准方便的特点。如果存在一氧化碳、硫化氢等有毒气体,就要优先选择一个特定气体检测仪才能保证工人的安全。如果更多的是有机有毒有害气体,考虑到其可能引起人员中毒的浓度较低,比如芳香烃、卤代烃、氨(胺)、醚、醇、脂等等,就应当选择前章介绍的光离子化检测仪,而不要使用LEL检测器应付,因为这可能会导致人员伤亡。
确定使用场合:
工业环境的不同,选择气体检测仪种类也不同。
A) 固定式气体检测议:
这是在工业装置上和生产过程中使用较多的检测仪。它可以安装在特定的检测点上对特定的气体泄漏进行检测。固定式检测器一般为两体式,有传感器和变送组成的检测头为一体安装在检测现场,有电路、电源和显示报警装置组成的二次仪表为一体安装在安全场所,便于监视。它的检测原理同前节所述,只是在工艺和技术上更适合于固定检测所要求的连续、长时间稳定等特点。它们同样要根据现场气体的种类和浓度加以选择,同时还要注意将它们安装在特定气体zui可能泄漏的部位,比如要根据气体的比重选择传感器安装的zui有效的高度等等。
B) 便携式气体检测仪:
由于便携式仪器操作方便,体积小巧,可以携带至不同的生产部位,电化学检测仪采用碱性电池供电,可连续使用1000小时;新型LEL检测仪、PID和复合式仪器采用可充电池(有些已采用无记忆的镰氢或鲤离子电池),使得它们一般可以连续工作近12小时,所以,作为这类仪器在各类工厂和卫生部门的应用越来越广。
如果是在开放的场合,比如敞开的工作车间使用这类仪器作为安全报警,可以使用随身佩戴的扩散式气体检测仪,因为它可以连续、实时、准确地显示现场的有毒有害气体的浓度。这类的新型仪器有的还配有振动警报附件以避免在嘈杂环境中听不到声音报警,并安装计算机芯片来记录峰值、S(15分钟短期暴露水平)和TWA(8小时统计权重平均值)为工人健康和安全提供具体的指导。
如果是进入密闭空间,比如反应罐、储料罐或容器、下水道或其它地下管道、地下设施、农业密闭粮仓、铁路罐车、船运货舱、隧道等工作场合,在人员进入之前,就必须进行检测,而且要在密闭空间外进行检测。此时,就必须选择带有内置采样泵的多气体检测仪。因为密闭空间中不同部位(上、中、下)的气体分布和气体种类有很大的不同。比如:一般意义上的可燃气体的比重较轻,它们大部分分布于密闭空间的上讯一氧化碳和空气的比重差不多,一般分布于密闭空间的中慨而象硫化氢等较重气体则存在于密闭空间的下部(如图所示)。同时,氧气浓度也是必须要检测的种类之一。另外,如果考虑到罐内可能的有机物质的挥发和泄漏,一个可以检测有机气体的检测仪也是需要的。因此一个完整的密闭空间气体检测仪应当是一个具有内置泵吸功能以便可以非接触、分部位检测具有多气体检测功能以检测不同空间分布的危险气体,包括无机气体和有机气侬具有氧检测功能防止缺氧或富辄体积小巧,不影响工人工作的便携式仪器。只有这样才能保证进入密闭空间的工作人员的安全。
另外,进入密闭空间后,还要对其中的气体成分进行连续不断的检测,以避免由于人员进入、突发泄漏、温度等变化引起挥发性有机物或其它有毒有害气体的浓度变化。
如果用于应急事故、检漏和巡视,应当使用泵吸式、响应时间短、灵敏度和分辨率较高的仪器,这样可以很容易判断泄漏点的方位。在进行工业卫生检测和健康调查的情况时,具有数据记录和统计计算以及可以联接计算机等功能的仪器应用起来就非常方便。
目前,随着制造技术的发展,便携式多气体(复合式)检测仪也是我们的一个新的选择。由于这种检测仪可以在一台主机上配备所需的多个气体(无机/有机)检测传感器,所以它具有体积小、重量轻、相应快、同时多气体浓度显示的特点。更重要的是,泵吸式复合式气体检测仪的价格要比多个单一扩散式气体检测仪便宜一些,使用起来也更加方便。需要注意的是在选 择这类检测仪时,选择具有单独开关各个传感器功能的仪器,以防止由于一个传感器损害影响其它传感器使用。同时,为了避免由于进水等堵塞吸气泵情况发生,选择具有停泵警报的智能泵设计的仪器也要安全一些。
一、生产过程中常见的有毒、有害气体介绍
在生产过程中对财产与人的健康、生命造成危害的因素大体上可以分为物理、化学与生物三方面。其中化学因素的影响危害性zui大。而有毒有害气体又是化学因素中zui普遍、zui常见的部分。所以本部分重点介绍有毒有害的气体知识。
根据危害我们将有毒有害气体分为可燃气体与有毒气体两大类。有毒气体又根据他们对人体不同的作用机理分为刺激性气体、窒息性气体和急性中毒的有机气体三大类。
其中刺激性气体包括氯气、光气、双光气、二氧化硫、氮氧化物、甲醛、氨气、臭氧等气体。刺激性气体对机体作用的特点是对皮肤、黏膜有强烈的刺激作用,其中一些同时具有强烈的腐蚀作用。刺激性气体对机体的损伤程度与其在水中的溶解度与作用部位有关。一般来说,水溶性大的化学物,如氯气、氨气、二氧化硫等对眼和上呼吸道迅速产生刺激作用,很快出现眼和上呼吸道的刺激症状;水溶性较小的化学物,如光气、二氧化氮等,对下呼吸道及肺泡的作用较明显。刺激性气体造成的病变的严重程度除化学物本身的性质外,zui重要的是与接触化学物的浓度和时间密切相关。短期接触高浓度刺激性气体,可引起严重急性中毒,而长期接触低浓度则可造成慢性损伤。急性刺激性气体中毒通常先出现眼及上呼吸道刺激症状,如眼结膜充血、流泪、流涕、咽干、咳嗽、胸闷等症状,随后这些症状可减轻或消失,经过几小时至3天不等的潜伏期后症状突然重现,很快加重,严重者可发生化学性支气管肺炎、肺水肿,表现为剧烈咳嗽、咯白色或粉红色泡沫痰、呼吸困难、发绀等,可因肺水肿或并发急性呼吸窘迫症等导致残废。
窒息性气体包括一氧化碳、硫化氢、氰氢酸、二氧化碳等气体。这些化合物进入机体后导致的组织细胞缺氧各不相同。一氧化碳进入体内后主要与红细胞的血红蛋白结合,形成碳氧血红蛋白,以致使红细胞失去携氧能力,从而组织细胞得不到足够的氧气。氰化氢进入机体后,氰离子直接作用于细胞色素氧化酶,使其失去传递电子能力,结果导致细胞不能摄取和利用氧,引起细胞内窒息。甲烷本身对机体无明显的毒害,其造成的组织细胞缺氧,实际是由于吸入气中氧浓度降低所致的缺氧性窒息。硫化氢进入机体后的作用是多方面的。硫化氢与氧化型细胞色素氧化酶中的三价铁结合,抑制细胞呼吸酶的活性,导致组织细胞缺氧硫化氢可与谷胱甘肽的巯基结合,使谷胱甘肽失活,加重了组织细胞的缺氧另外,高浓度硫化氢通过对嗅神经、呼吸道黏膜神经及颈动脉窦和主动脉体的化学感受器的强烈刺激,导致呼吸麻痹,甚至猝死。
急性中毒的有机溶剂有正己烷、二氯甲烷等。上述有机挥发性化合物同以上无机有毒气体一样,也会对人体的呼吸系统与神经系统造成危害,有的致癌,比如苯。由于有机化合物大多为可燃的物质,所以对于有机化合物的检测以前大多检测他的爆炸性,但有机化合物的zui低爆炸极限远远大于它的MAC(空间zui大允许浓度)的值。也就是说,对有机化合物的毒性进行检测是必要的,也是必须的。
可燃性气体的危害主要是气体燃烧引起爆炸,从而对财产与人的生命造成危害。但可燃气体发生爆炸必须具备一定的条件。一定量的可燃气体、足够的氧气与点燃的火源。以上三个条件缺一不可。通常将可燃气体发生爆炸的气体浓度称为zui低爆炸极限,一般用LEL表示。不同的可燃气体具有不同的LEL。所以对于可燃气体的检测一般检测它的LEL。
二、有毒有害气体的检测原理与分类
气体检测器的关键的部件为传感器。气体传感器从原理可以分为三大类:
A)利用物理化学性质的气体传感器:如半导体、催化燃烧、固体导热、光离子化等。
B)利用物理性质的气体传感器:如热导、光干涉、红外吸收等。
C)利用电化学性质的气体传感器:电流型、电势型等。
下面将结合有毒有害气体检测常用的几种检测器来介绍他们的原理。
对于常见的可燃气LEL的检测,现在一般用催化燃烧检测器。它的原理如下,传感器的核心为一惠通斯电桥,其中一桥臂上有催化剂,当与可燃气体接触时,可燃气体在有催化剂的电桥上燃烧,该桥臂的电阻发生变化,其余桥臂的电阻不变化,从而引起整个电路的输出发生变化,而该变化与可燃气体的浓度成比例,从而实现对可燃气体的检测。从以上原理可知,通过该方法检测可燃气,它以催化燃烧为基础,所以它的分辨率较低。该方法的分辨率一般为1%LEL,大约为100PPm左右。所以对于有机气体毒性的检测不能采用该检测方法。
对于常见有毒气体的检测,特别是无机毒气,一般采用专用的传感器进行检测。既定性又定量进行检测。该类传感器大多为电化学传感器。电化学传感器一般为三电极的形式。其中目标气体在工作电极上发生反应,产生的电流通过对电极构成回路,参比电极为工作电极提供合适的偏值。传感器通过参比电极与工作电极的催化剂实现选择性反应,即定性反应。回路产生的电流与气体的浓度成正比,实现定量反应。而一般的氧气传感器为两电极传感器,他的检测原理与三电极大致相似,只是采用三电极的传感器的输出更稳定,寿命更长。
对于有机挥发性气体毒性的检测,以前一般采用检测管的方法,但由于检测管的种类有限,且精度不高,操作麻烦,所以实际的应用受到影响。目前世界上比较先进的检测方法为光离子化检测方法,它的原理为,通过一紫外灯将目标气体电离,离子通过一传感器收集形成电流,该电流与目标气体的浓度成正比,从而实现对有机挥发性气体的定量检测,由于是离子级别的检测,所以该方法的分辨率高、响应时间快。该方法的分辨率达到0.1PPm,zui高达到1PPb.从原理上可以知道,凡能被电离的有机物就能被仪器进行检测,而不能被电离的物质就不能被检测.由于大多书常见的无机气体的IE都很高,所以不会对检测进行干扰.而大多数的有机气体都能被电离,所以该检测器对有机挥发性气体来说,为宽带检测器.精度高、检测范围宽、响应时间短、易操作等特性决定了该仪器特别适于安全与工业卫生领域的应用。
有毒有害气体的检测原理和应用
电化学传感器
电化学传感器可以检测进入密闭空间和在其间工作时遇到的各类有毒污染物。目前,对于干扰组份的响应较小的特定物质传感器的数目还不是很多,大约为20种左右。另外一些是宽带的污染物传感器。电化学传感器的特点是体积小、耗电小、线性和重复性较好、寿命较长。
市场上不仅可以见到安装特定电化学传感器的单一气体检测仪,还可以见到包含了氧气、易燃易爆气体和一个到三个电化学传感器的复合式密闭空间检测仪。
特定气体电化学传感器包括下面几部分:可以渗过气体但不能渗过液体的扩散式隔膜;酸性电解液槽(一般为硫酸或磷酸);传感电极;测量电极;参比电极(三电极设计);有些传感器还包括一个可以滤除干扰组份的滤膜。
传感电极可以催化一些特殊的反应。随传感器不同,待测物质将在电极上发生氧化或者还原反应,并相对于测量电极产生正或负的电位差。双电极系统意味着测量电极的电位要保持恒 定,而实际上,由于在两个电极上发生的反应都会使电极极化,因而也限制了它们可以检测的 浓度范围。
三电极设计则有所不同,仪器测量的是在参考电极和传感电极之间的电位变化,由于参考电极不参与反应,它保持着恒电位,此时电位的变化就同浓度的变化直接有关。传感器产生的电流直接同气体的浓度成正比,并且有很宽的线性测量范围。
便携式直读仪器的传感器室(包括PID,氧气\电化学传感器\易燃易爆气体等)
下面用一氧化碳在电化学传感器上的氧化过程描述一下它的检测机理和非消耗型传感器的设计CO在传感电极上的氧化:
CO + H2O -> CO2 + 2H+ + 2e-
计数电极通过将空气或水中的氧气还原对此进行平衡。
1/2 O2 + 2 H+ + 2 e- ->H2O
在检测过程中消耗的物质仅仅是CO分子、电能和氧气,这也是非消耗型传感器寿命较长的原因。传感器的寿命同它所测量污染物无关,传感器仅仅是测量的催化剂。在检测过程中传感 器没有任何的消耗,它可以通过环境中的氧气和微量水分得到补充。
其它气体电化学传感器也同样是这种非消耗型设计,包括:氯气、氢气、硫化氢、二氧化氮、磷化氢和二氧化硫等等。
有些操作环境会限制电化学传感器的使用,比如,一个非消耗型的硫化氢电化学传感器就不能测量没有氧气的天然气管道中的硫化氢浓度。因为此时一旦传感器中的氧气消耗殆尽,测 量也就结束了。而在重新放置在氧气恒定的空气中后,传感器还会恢复正常。
事实上,如果电解液可以提供氧气就意味着非消耗型传感器可以在短时间内检测缺氧条件下的污染物浓度。这点对于某些气体的校正就十分有利,因为某些气体,比如氯气,在有氧气 存在下的保存寿命很短,它的标准气体瓶中一般都是由氮气平衡而没有氧气。有时需要在计数电极上使用一个偏置电压,这有助于传感器对特定化合物的检测。这通常应用于电活性较弱的气体,比如氢气和一氧化氮等。有些污染物(如氨和氰化氢)的测定使用的是间接方法,它通过消耗传感器中的物质,比如金的传感电极,来建立某种测量关系。
2 HCN + Au -> HAu(CN)2 + H+ + e-
此时,由于测量会消耗电极材料,所以这类传感器的寿命同它所暴露的浓度有很大的关系。比如Cities公司的氨传感器如果连续暴露于2ppm氨气之中,它的寿命大约是一年(或者称为2ppm年寿命)。如果暴露于4ppm的氨气水平。则只有6个月的寿命。这样,这种氨的传感器就不适合于应用于化肥厂,因为此时的氨的浓度平均都在20-30ppm左右。电化学传感器性能比较稳定、寿命较长、耗电很小、分辨率一般可以达到0.1ppm(随传感器不同有所不同)。它的温度适应性也比较宽(有时可以在-40到50°C 间工作)。然而,它的读数温度变化的影响也比较大。所以很多这种仪器都有软硬件的温度补偿处理。
电化学传感器的主要缺点是干扰。当然在设计上,我们会尽可能排除或减少其它气体的干扰。比如,有些传感器使用一个过滤膜来去除其它物质的干扰。检测一氧化碳和硫化氢传感器 的区别就是其过滤膜。过滤膜可以去除空气中的硫化氢。而一氧化碳传感器如果没有这个过滤 膜,就被称为"双效"传感器,它既可以检测一氧化碳,又可以检测硫化氢。一氧化碳传感器对硫化氢的相对响应是3.5:1.0,这意味着10ppm的硫化氢可能在一个一氧化碳传感器上的读数是10*3.5或者35ppm。这有时是一个不错的选择,因为硫化氢的TWA值是10ppm而一氧化碳是35ppm,这意味着不论是一氧化碳或者硫化氢超标都会引起仪器报警。
由于一种传感器会对多种气体同时响应,用户无法认定是那种气体引起读数,也就是,用户无法确定那种危险存在,这也是很麻烦的事情。无论如何,测量干扰还是存在的。在某些情况下,干扰是正的,传感器的读数比实际值要大;有些则相反。还原性气体,比如硫化氢和一氧化碳会在电极上氧化,而氧化性气体,比如氯气、二氧化氮和臭氧,则在电极上还原。由于它们不同的行为,它们的干扰也就有所不同。